First-order Hyperbolic Pseudodifferential Equations with Generalized Symbols

نویسنده

  • Günther Hörmann
چکیده

We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under log-type growth conditions on the symbol, thereby extending known results for the case of differential operators ([17, 19]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A P ] 1 1 A ug 2 00 3 FIRST - ORDER HYPERBOLIC PSEUDODIFFERENTIAL EQUATIONS WITH GENERALIZED SYMBOLS

We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is generalized, resembling a representative of a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under logtype growth conditions on the s...

متن کامل

Equations with Generalized Symbols

We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is generalized, resembling a representative of a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under logtype growth conditions on the s...

متن کامل

Pseudodifferential Operators And Nonlinear PDE

CONTENTS Introduction. 0. Pseudodifferential operators and linear PDE. §0.1 The Fourier integral representation and symbol classes §0.2 Schwartz kernels of pseudodifferential operators §0.3 Adjoints and products §0.4 Elliptic operators and parametrices §0.5 L 2 estimates §0.6 Gårding's inequality §0.7 The sharp Gårding inequality §0.8 Hyperbolic evolution equations §0.9 Egorov's theorem §0.10 M...

متن کامل

Strongly hyperbolic second order Einstein’s evolution equations

BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In ...

متن کامل

Fourier-integral-operator approximation of solutions to first-order hyperbolic pseudodifferential equations I: convergence in Sobolev spaces

An approximation Ansatz for the operator solution, U(z′, z), of a hyperbolic first-order pseudodifferential equation, ∂z +a(z, x, Dx) with Re(a) ≥ 0, is constructed as the composition of global Fourier integral operators with complex phases. An estimate of the operator norm in L(H, H) of these operators is provided which allows to prove a convergence result for the Ansatz to U(z′, z) in some So...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008